Toward the Fourth Dimension of Membrane Protein Structure: Insight into Dynamics from Spin-Labeling EPR Spectroscopy

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gd3+ spin labeling for distance measurements by pulse EPR spectroscopy.

Methods for measuring nanometer scale distances between specific sites in biomolecules (proteins and nucleic acids) and their complexes are essential for describing and analyzing their structure and function. In the last decade pulse EPR techniques were proven very effective for measuring distances between two spin labels attached to a biomolecule. The most commonly used spin labels for such me...

متن کامل

Membrane protein structure and dynamics from NMR spectroscopy.

We review the current state of membrane protein structure determination using solid-state nuclear magnetic resonance (NMR) spectroscopy. Multidimensional magic-angle-spinning correlation NMR combined with oriented-sample experiments has made it possible to measure a full panel of structural constraints of membrane proteins directly in lipid bilayers. These constraints include torsion angles, in...

متن کامل

Site-Directed Spin Labeling EPR for Studying Membrane Proteins

Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy is a rapidly expanding powerful biophysical technique to study the structural and dynamic properties of membrane proteins in a native environment. Membrane proteins are responsible for performing important functions in a wide variety of complicated biological systems that are responsible fo...

متن کامل

Into the fourth dimension

The influence of time on the drought response of Brassica rapa, an agriculturally important species of plant, has been clarified.

متن کامل

Non-linear, continuous-wave EPR spectroscopy and spin–lattice relaxation: spin-label EPR methods for structure and dynamics†

The sensitivity of continuous-wave, non-linear EPR signals to spin–lattice (T1) relaxation has been investigated. The aim was to identify those spectral displays that are most appropriate to obtain structural and dynamic information from spin-label EPR experiments that involve detection of T1-relaxation enhancements. This has been achieved by solving the Bloch equations for the various harmonic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Structure

سال: 2011

ISSN: 0969-2126

DOI: 10.1016/j.str.2011.10.009